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SOLUTION OF A DIFFRACTION PROBLEM*
I. THE WIDE DOUBLE WEDGE

By H. M. NUSSENZVEIG
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

(Communicated by M. J. Lighthill, F.R.S.—Receivéd 31 January 1959)
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The problem of radiation from a semi-infinite parallel-plate waveguide, terminated by an infinite
plane flange (‘double wedge’) is investigated in the £-representation. The problem is reduced to an
infinite system (S) of linear equations. Part I deals with the case of a ‘wide double wedge’ (the
width of the waveguide much greater than the wavelength). This may be considered as a perturba-
tion of the problem of diffraction by a single rectangular wedge, the rigorous solution of which is
known (Reiche 1912). In the k-representation, this solution satisfies an integral equation, which is
a limiting form of system (). This leads to an approximate solution of the wide double-wedge
problem, which appears to be a very good approximation, except in the neighbourhood of critical
frequencies of the waveguide. The diffraction patterns and the reflexion coefficient are evaluated
in this approximation. The accuracy and limits of applicability of classical diffraction theory are
discussed. In the neighbourhood of critical frequencies, strong reflexion appears. This is a new
limiting case of the problem, which is connected with the theory of quasi-stationary currents.
Neumann’s iteration method is applied to system (), in order to investigate the possibility that
Kirchhoff’s approximation is the first step of an accurate solution by successive approximations. The
convergence of Neumann’s series is discussed.
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1. INTRODUCTION

The classical theory of diffraction (Fresnel-Kirchhoff) isusually applied to the diffraction by
large apertures (smallest aperture dimension > A, where A is the wavelength). The results
are in excellent agreement with experiment, for not too large diffraction angles. How can
this agreement be explained ?
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2 H. M. NUSSENZVEIG ON THE

It is claimed, sometimes, that the closeness to geometrical optics justifies Kirchhoft’s
approximation. However, Kirchhoff’s approximation may fail (in the neighbourhood of
a sharp edge, for instance), without appreciably affecting the classical diffraction patterns
(Sommerfeld 1954, pp. 264-5). As Sommerfeld remarks, ‘It is amazing that the classical
diffraction theory nevertheless yields for all practical purposes satisfactory results’.

It has also been suggested that Kirchhoft’s formula might be the first step of an accurate
solution by successive approximations (Born 1933, p. 152). A proposed iteration method,
based on Helmholtz’s formula, does not succeed, as was shown by Franz (1949) and
Schelkunoff (1g51). This does not rule out the possibility of an accurate solution by a dif-
ferent method of successive approximations.

In the few problems where the rigorous solution is known, the accuracy of classical theory
may be determined by direct comparison. So far, the scope of rigorous theory has been
restricted to the ideal case of perfect conductors. The first problem to be rigorously solved
(Sommerfeld 1896) was that of a perfectly conducting wedge (in particular, a half-plane).
This is not very convenient for comparison with classical theory, since no linear dimension
of the diffracting object is finite.

Diffraction by objects having one typical finite dimension « is more interesting. We may
define, in this case, a ‘short-wavelength region’ (A < a), an ‘intermediate wavelength
region’ (A ~ a) and a ‘long-wavelength region’ (A > a). The domain of classical theoryis the
short-wavelength region, where interference phenomena play an important role. In the
long-wavelength region, quasi-static approximations may be employed; the phenomena
which occur in this domain are of a much simpler nature.

Important cases of diffraction by objects having a finite dimension, which may be
rigorously solved by the Wiener—Hopf technique, appear in the theory of radiation from
semi-infinite waveguides (Vajnshtejn 1954). Although the solutions become very compli-
cated in the short-wavelength region, a partial comparison with the results of Kirchhoff’s
theory is possible. A review of this work, as well as an excellent account of recent progress in
diffraction theory, has been given by Bouwkamp (1954).

As may be seen by the preceding discussion, no satisfactory answer has yet been given to
the following questions: (A) How can the success of classical diffraction theory be explained ?
(B) What is the accuracy, and what are the limits of applicability of this theory? (C) Can
Kirchhoff’s approximation be considered as the first step of an accurate solution by
successive approximations? Since most known rigorous solutions are based on complex
mathematical methods, which frequently obscure the physical meaning of the results, it
would be desirable: (D) To find a physical picture of the phenomena which occur in the
short- and in the long-wavelength regions, allowing us to establish a connexion between
them.

The object of the present paper is to throw some light on the above questions. It has been
shown in a previous paper (Nussenzveig 1959) that, by employing the ‘k-representation’,
we may arrive at a qualitative understanding of the success of classical diffraction theory. In
this paper, to obtain quantitative results, a typical diffraction problem, to be described in § 2,
will be investigated in the k-representation. Part I deals with the short-wavelength region;
the long-wavelength region will be considered in part IT. The conclusions will be given at
the end of part II.
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SOLUTION OF A DIFFRACTION PROBLEM. I 3

2. FORMULATION OF THE PROBLEM

The simplest diffraction problem, involving one finite dimension, which may be treated
in the £-representation, seems to be the ‘double-wedge’ problem. A double wedge is a pair
of perfectly conducting rectangular wedges (figure 1). It is equivalent to a parallel-plate
waveguide of width 4 = 2a, with an infinite plane flange at the mouth. The incident wave is
one of the waveguide modes, travelling towards the open end.

Yy
: @ incident
a) o—— mode_, »
(1)

Ficure 1. Co-ordinate system.

The co-ordinate system is shown in figure 1. The time factor exp (—iwt) (@ = k¢ = 2mc/A)
will be omitted throughout. We shall consider only the case of transverse magnetic (TM)
waves, which may be described by a single scalar wave function (¥, y). The field components
are ’

H = (0,0,u); E—.(%l(%‘, —%%,o). (21)
The function u(x, y) has the following properties (Bouwkamp 1954, p. 38):
(a) (0%)0x?+-0%]0y® 4+ k%) u(x,y) = 0, (2-2)
(b) Oufdy(x, £a) =0 (x> 0), (2-3)
() 0uox(0,9) =0 (|y| > a), (2-4)
(@) w(0+,y) =u(0—,9) (ly| <a), (25)

(¢) dufox(0+,y) = dujdx(0—,y) (| <a), (2-6)

(f) u satisfies Sommerfeld’s radiation condition. This condition takes different forms in
regions I and II (see figure 1): (/I) the only incoming wave in region I is the incident
mode; (fII) there are no incoming waves in region II.

(g) Vuisquadraticallyintegrable over any domain of three-dimensional space, including
the edges of the double wedge (‘edge condition”’).

This boundary-value problem admits also an acoustical interpretation: it suffices to
re-interpret u(x,y) as the velocity potential of sound waves, assuming that the walls of the
double wedge are perfectly rigid.

-2
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4 H. M. NUSSENZVEIG ON THE

We shall take as incident wave a symmetric T M mode, so that the total wave function will
be symmetric about Ox: u(x,y) = u(x, —y). The symmetric TM modes of a parallel-plate
waveguide may be classified according to the eigenvalues of £,

k, n=mnmla (n=0,1,2,...). (2-7)

Y. n
For n = 0, we obtain the principal mode, the only mode which may travel within the
waveguide for any value of the frequency; £, , <k corresponds to travelling modes;
k, , >k leads to evanescent modes (Toraldo di Francia 1956, p.245). A travelling mode
may be regarded as arising from the superposition of a plane wave, travelling at an angle
0, with respect to the x-axis, and its mirror image with respect to the plates, the ‘angle of
propagation’ ¢, being given by sinf, = k, ,/k. The incident mode will be denoted by 7 = s.
According to condition (fI), the wave function in region I may be written as

(,) = 08 (ky o9) exp (—iky )+ 3 a,c05 (k, o) oxp (ik, ,%), (28)
n=0
where ko= (R—K2 ) J(k,,) = 0. (2-9)
Equation (2-8) represents the incoming mode (normalized to unit amplitude), plus a super-
position of all ‘reflected’ travelling modes and all evanescent modes. The unknown coeffi-
cients a, will be called ‘mode amplitudes’.
Similarly, according to (fII), the wave function in region II may be represented by
a superposition of outgoing travelling waves and evanescent waves:

U (%, y f A(k,) cos (k,y) exp (—ik,x) dk,, (2-10)
k= (kz—-kZ) , J(k)=0. (2-11)

X.

This representation will be called ‘k-representation’ (Nussenzveig 1959).
The coefficients a, and 4(k,) may be expressed in terms of each other. In fact, it follows
from (2-5) that

a,+0, = (1/al,) f dyf ) cos (K, ,,y) cos (k,y) dk,, (2-12)

where {, =2,{,, =1(m * 0),and 0, ;= 0ifm *+ 5,4, ;=1 if m = 5. Similarly, it follows
from (2-5) and (2-6) that

A(ky) = - (l/ﬁkx) n§O kx,n(an _372, s) fjacos (kyy) COs (ky,ny) dy’ (213)

Equations (2:12) and (2-13) may be combined in two different ways. If we eliminate a,
between them, we obtain an integral equation to determine 4(%,) ; if we eliminate 4(%,), the
result is an infinite system of linear equations in the infinitely many unknowns a,. We shall
adopt the second procedure, which leads to a simpler treatment.

The infinite system of linear equations which results from the elimination may be reduced
to the form

(S) an=

m

S
1Ms

Km,nan*‘Km,s’ (214)
where

+a +a +00
Ko = 30— (hout1al,) [y [y [ cos (k) €05 (k) cos (k) cos (k) dk .
c (2:15)
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SOLUTION OF A DIFFRACTION PROBLEM. I 5

If we find a solution of system (S), the corresponding wave function (which must satisfy
condition (g)) is determined by (2-8), (2:10) and (2:13). Our problem is therefore reduced
to finding the solution of system (.5).

3. THE coErrFiCIENTS K, ,

In this section, we shall give an outline of the methods for the evaluation of the coefficients
K,, , defined in (2-15). Computational details may be found elsewhere (Nussenzveig 1957;
henceforward quoted as A).

Introducing the dimensionless parameters

K =ka = 2majd; y=k,k; y,=k, /k=nn/K (31)
and employing the integral representation
’ 1 e ’
Hykly—y'|) = [ cos k,(y—y)) dkfk, (3:2)
where H denotes Hankel’s function of the first kind of order zero,* we can reduce (2:15)
to the form Kppn = 3t (17D (2KE) 0, (8:3)
1 (K +K
where Comn = «éf dtf Hy(|t—1'|) cos (y,,2) cos (y, ') dt’ = ¢, . (3-4)
—-K —-K

If we make in (3-4) the change of variables: ¢ = u— K ; ¢’ —¢ = v, and integrate with respect
to u, we find, for m = n,

Cm,n = (w 1)m+n(y72n~}’721)_1[ymsm(K) —Vn SH(K)]J (3.5)

where S,(K) = f 2KHO(v) sin (y,) dv; (3-6)
whereas, for m = n, we find ’

Gy = HIS(K) 1] —2KC,(K) +-D(K)}  (for n+0), (3:7)

to,0 = —2KGy(K) +Dy(K), (3-8)

where C,(K) zf:KHo(v) cos (y,v) d, (3-9)

D,(K) =f:KH0(v) cos (y,v) vdo. (3-10)

Integrating (3-10) by parts in two different ways gives
D,(K) = (1 —yi)~[2KH,(2K) +(2i/m) +7, S,(K)], (3-11)

n

where H, is Hankel’s function of the first kind of order one.
Substituting (3+5) to (3-11) in (3-3), we finally get

Kpp= (= 1™ (L=} (2KE) ] (72— 73) [ Sn(K) =72 $,(K)] - (m == m),

(3-12)

K, = 31— (193 C(K)]+[(1 —y3)"¥/4K] [2KH\(2K) + (2i/m) +8,(K) [y,] (n :4:( 0), |
3-13

Ky, o = 3[1—Cy(K) +H,(2K) + (i/nK)]. (3-14)

* Since we shall employ only Hankel functions of the first kind, the superscript (1) will be omitted.
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6 H. M. NUSSENZVEIG ON THE

These equations reduce the evaluation of the coefficients K,, , to that of the functions
S$,(K) and C,(K) defined in (3-6) and (3-9). To study the behaviour of these functions, we
must distinguish between different wavelength regions. In the short-wavelength region
(K> 1), we may employ asymptotic expansions; in the long-wavelength region (K < 1),
expansions about the origin. The latter case will be deferred to part II.

Let us consider the case K > 1. We may write

S,(K) = Sr,)—%(K); C,(K) = C(y,) ~%,(K), (3:15)
where S = | Hofo)sin (1,0) dvs - €)= [ Hyfw) cos (7,0) (3:16)
) = [ Hfo)sin (5,0) dv; %(K) = | Hy(o) cos (7,0) (3:17)
According to known results (Erdélyi 1954, pp. 43, 47, 99, 103),
Cl) = (1—72)%, (3:18)
(@) (1 =) Esinly, (for 0<y, < 1), ,
o {wz—lr% [1—(2i/m) Ing,] (for 3, > 1), } (319

where 0, =Y,+ (y2—1)* (3:20)

and, in agreement with (2-9), Z[(1—72)%] =0 |
To obtain an asymptotic expansion of the integrals defined in (3:17), it suffices to replace
H(v) by its asymptotic expansion and to integrate term by term (for details, see A).

Let us introduce the parameter
= (K[1=y,|/m*. (3-21)

This parameter is a measure of the distance between the nth mode and the ¢ritical mode n = c,

which is defined by the condition that all modes with n < ¢ are travelling modes, whereas

modes with z > ¢ are evanescent modes. If §, < 1, we shall say that the nth mode belongs to

the critical strip. It turns out that we must distinguish between the cases §, > 1 and 4§, < 1.
For 0, > 1, we find the asymptotic expansions

(K) = — (mK) (1 —y}) 'y, exp [i(2K—}m)] [1+ (i/16K) (y2—9)/(1 —73)
+0(5 9]+ 0(KH), (322)
©,(K) = (nK)~(1—y7) "' exp [i(2K +{m)] [1—(i/16K) (3y3+5)/(1—72)
+0(35;9)]+0(KH).  (3-23)
It follows, by comparing these results with (3-18) and (3-19), that ‘
| F(E)S(ra)|l <15 |G (K)/Clr)| <1, (3-24)

so that %(K) and %,(K) may generally be neglected for 4, > 1.
For é, <1, we find

F(K) = {i[2(1—7,)]17F — (K/m)* exp (3im) F*(29,)0,} [1+1(1—7,)]+ O(K?),  (3-25)
G,(K) = {[2(0—y) 17}~ (K/m)* exp (—im) F£(20,)[0,} [1+1(1 —7,)]+ O(KY), (3-26)

where F*(w) = f exp (%ime?) d¢ (3-27)
» 0
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SOLUTION OF A DIFFRACTION PROBLEM. I 7

is the Fresnel integral and F~(w) is its complex conjugate. Wherever a double sign occurs,
the upper sign refers to 7, < 1, and the lower one refers to y, > 1. Expanding (3-18) and
(3-19) in powers of (1—v,), and taking into account (3-25) and (3-26), we finally get, for

WL 5(K) = (Kjm)exp (fin) [1+3(1—7,)] F*(28,)/8,~ 2im+ O(K-), (3-28)
Co(K) = (K[m)* exp (—im) [1+3(1—7,)] F*(28,) /3, + O(K~H). (3-29)

In particular, for §, < 1, we find, employing the power series expansion of the Fresnel
integral, ; :
S (K) = 2(K/n)? exp (tim) —2i/m -4 exp (}im) (mK)? 82/3+... - O(K~?),  (3:30)

C,(K) = 2(K/m)¥ exp (—}im) -4 exp (}in) (nK)? 62/3+...+ O(KY). (3-31)
These results may be extended to the case in which K is not > 1, with the help of the exact
integrals oz 9; :
flz) = f Hy(0) sin (z—v) do == cos z-+ 2H, (2), (3-32)
0
o(z2) = j "H,(0) sin (z—0) vdv = $cos 2+ 3[22H, (2) — 2 Hy(2)], (3-33)
0

which may be derived (see A) by a method similar to that which is employed in the evalua-
tion of Kapteyn’s trigonometric integrals (Watson 1948, p. 380). For n & 0, we have

S,(nm) = —f(2nm);  C,(nm) = f'(20m); (3:34)
nmSy(nm) = —f(2nn) +g(2nn); nnC,(nw) = f'(2nm) —g' (2nm), (3:35)
where primes indicate derivatives with respect to the argument. With the help of (3-32) to

(3:35), S,(K) and C,(K) may be expanded in Taylor series about the point K = nm. The
results are as follows:

S (K) = — 2nnH,(2nm) -—%%1%713,21[27277110(2?271)+H1(2n11)+(i/n712)]+0(3;§), (3-36)

C,(K) = 2KH,(2nm) F 4nK02H, (2nm) + O (8%). (3-37)

Equations (3:36) and (3:37) may be applied in the neighbourhood of K = n, for any n = 0.
For K > 1, they reduce to (3-30) and (3-31).

The above results suffice for the evaluation of the coefficients K, , in all cases which will
be required in part I. The final results, obtained with the help of (3:12) to (3-14), are listed
below. \

First case: K> 1,0,>1,0,> 1,

Ky, = (= 1) [(1—y2)}/(2KL,)] (K, +AK,,,)  (m o n), (3-38)
Ky = (3= 1) [0S () = 18 (1)] = Ko, - (339)
AK, , = (1K)t exp [iI(2K—4m)] [(1—73) (1)1 [1+0(5;9) +0(579)] = AK,
; (3-40)
K, = [(1-7)¥(2KL)] (K, ,+AK;, ), (3-41)
K= (1=7D) 7 (/) +5(72) /20, = lim (KG,,)- (3-42)

AK}, , is a small correction to K, , in this region.
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8 H. M. NUSSENZVEIG ON THE

Second case: K > 1,6, 0oré, S 1.

In this case, we must employ (3-28) and (3-29). We shall not consider all different possi-
bilities, but only the most interesting ones, which occur when 4, or d, is < 1. These are
particular instances of the following case.

Third case: K 2 1,6, or 0, < 1.

K, = (= 1) "4 [ 2mm H, (2mm) + (2i/m) +7,5,(K) +O0(37)] [2K (1 —y3)*]
(0, <1,m==mn), (3-43)
K, = (=1)m (- 2m/K) 8, [2nmH, (2nm) + (21/m) +7,,S,,(K) + O(83)] [2KC,, (1~ y3)]
(0, <1,m=mn), (344)
K, =1 —1(+20K)% 0, [2H,(2nm) +I%Hl(2n7r) +(1/nK%)]+0(83) (8, < 1). (3-45)

n,n
To obtain from (3-43) to (3:45) the expressions for the case K > 1, it suffices to replace
Hankel’s functions by their asymptotic expansions.

4. THE SINGLE-WEDGE PROBLEM

(a) Transition to the single-wedge problem

To obtain the rigorous solution of system () in all possible cases appears to be a problem
of considerable difficulty. Our approach will be the following: we shall look for rigorous
solutions in certain limiting cases, and we shall try to extend the range of these solutions by
perturbation methods. It will be shown later that there are three important limiting cases of
the double-wedge problem.

We shall begin with the case of the wide double wedge,i.e. K > 1. The corresponding limiting
case is K —o00. However, this limit is not uniquely defined. One possibility, which corre-
sponds to the geometrical optics limit, 1s to keep a fixed, while £ —co. Another possibility is to
keep £ fixed, while ¢ — co. This may be done as follows: let us keep one of the wedges fixed,
while the other one is removed to infinity. Let this process be carried out in such a way that
the ‘angle of propagation’ f; of the incident wave (see§ 2) is unchanged in the limit. The
limiting form of the double-wedge problem in this process should be the problem of diffrac-
tion of a plane wave incident at an angle §, on a single rectangular wedge. This problem,
which we shall call the single-wedge problem, has been rigorously solved by Reiche (1912).

Which of these possibilities should be chosen as ‘unperturbed problem’? The best choice
is, of course, that which corresponds to the smallest perturbation. Clearly, the solution of
the single-wedge problem must be closer to that of the wide double-wedge problem than the
geometrical optics limit. In fact, while the latter gives only a rough picture of the intensity
distribution, the former contains a detailed description of the field, including the correct
singularity at the edge. Therefore, we shall take Reiche’s problem as ‘ unperturbed problem”’.

Let us find out what happens to system (.5) in the transition to the single-wedge problem.
For this purpose, let us shift the origin of co-ordinates to the edge of the fixed wedge (figure 2).
In the new co-ordinates (x" = x, ¥y’ = y—a), (2'8) becomes

ul(x,, y,) = (_ 1)SCOS (ky,sy,) €xp (_ikx,sxl) + § (* l)nan Cos (ky,ny,) €Xp (ikx,nx,)‘ (401)
n=0
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SOLUTION OF A DIFFRACTION PROBLEM. I 9

As K increases, the y, spectrum becomes denser and denser, 7, tending to the continuous
variable y, and the difference Ay = y,—7,_; = n/K tending to the differential dy, when
K —o0. We may expect that the mode amplitudes, in general, also become infinitesimal, so

that
: a, = (—1)""[a(y,) +Aa,(K)] Ay, where lim[Aa,(K)]=0. (4-2)
K->

The limiting form of (4-1) should then be

w('y') = Afcos (ky'y.) exp [k (1=72)H+ [ a(y) cos (ky'y) exp [ikx' (119 1] ), (4:3)
0

where 4 is an amplitude factor.

¥}

0 !

|
|
|
m M
}
!
|

Ficure 2. Single-wedge co-ordinate system.

On the other hand, according to (3-38) to (3-42), we may write, for §,, > 1, §, > 1,

Ky = (= 1) [K (V10 72) FAK,, ,(K)] Ay, (4-4)
where K(7,,,7,) and AK,, ,(K) are given by (3-38) to (3-42), and
AK,, ,(K) = O(K-%) for K- o0. (4-5)

Substituting (4-2) and (4-4) in system (), we get, for §; > 1, J,, > 1,

a(7) +80,(K) = 3 [K(157,) +AK,,,,(K)] [a(7,) + A, (K)] Ay
T3 Kle(n) +Aa(K)] = (7 1) +AK, (K)]. - (46)

As K increases, the region where 0, S 1 decreases, until, in the limit, it shrinks to the critical
point, y = 1. Since, according to (3-44), K,, , remains finite in this region, (4-6) shows that,
excluding the case of ‘exactly critical incidence’ 7, = 1, the limiting form of system (.5) in the
transition to the single-wedge problem is, at all points except y = 1, the following linear
integral equation of the second kind:

(B aly) = [ K,y) aly) &y =K1, (+7)
2 Vor. 252. A.
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10 H. M. NUSSENZVEIG ON THE

where (see (4-4) and (3-38) to (3-42))
K(y,7") = [(1=y2)2n] (2 =y [pS(r) —v'SG)] (v =+, (4-8)
K(y',y') = [A—y?)~42a] [(i/m) +S(y")/2y"] =71i3;, [K(y,7")] (49)

and S(y) is defined in (3-19).

Equation (R) is the integral equation of Reiche’s problem in the £-representation. It
follows from the above derivation that the solution of the double-wedge problem must tend almost
everywhere to the corresponding solution of the single-wedge problem when K — oo by the process
described above. The phrase ‘almost everywhere’ refers to the previously mentioned excep-
tional cases: the result fails for all values of y at exactly critical incidence (y, = 1), and it fails
at the point y = 1 for any other incidence. The critical mode, with y = 1, which is reflected
perpendicularly between the plates, is the only mode which can, so to speak, ‘feel’ the
presence of another wedge, located at infinity. We shall discuss in § 5(g) what happens at
exactly critical incidence.

(b) Solution of the integral equation

We shall now derive from Reiche’s solution of the single-wedge problem the rigorous
solution of equation (R). Taking 4 = 1 in (4-3), we get

aly) = (2kim) [ cos (yhy) (0 4") —cos (r.ky)] (410)

Therefore, to evaluate a(y), we need only the value of Reiche’s solution on the half-plane
¥ =0,y <O.

Ficure 3. Division into regions for definition of geometrical optics field.

In polar co-ordinates " = rcosf,y" = —rsin0 (figure 3), Reiche’s solution, adapted to
the TM case and to our notation, may be written as follows (Reiche 1912):

u(r,0) = uy(r,0) +uy(r,0), (411>
where u,(r, ) is the geometricaﬂ optics field, given by (see figure 3)

Hexp[ —ikrcos (0,—0)] +exp [—ikrcos (6,+6)]} (in regions 1 and 2),)
u,(r,0) = {texp [ —1ikrcos (0,—0 (in region 3), 4-12
o7, fexp s—0)] g (4-12)
0 (in region 4),
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SOLUTION OF A DIFFRACTION PROBLEM. I 11
and u,(r, 0) is the diffracted field, given by
—4./3uy(r,0) = exp [ —ikrcos (0,—0)] {e¥" cos [1(0,—0)] P,+ €t cos [2(0,—0)] P}
+exp [ —ikrcos (0,-+0)] {e¥7 cos [1(0,+0)] Py+ebim cos [2(0,+0)] Py}
+exp [ikr cos (0,—0)] {—e¥7 cos [1(0,—0)] P; -+ e¥im cos [2(0,—0)] Py}

+exp [ikr cos (0,+0)] {—e¥7 cos [1(0,+0)] Py +e¥im cos [2(0,+-0)] Py}, (4-13)
where

P, = | expliucos (6,—0)] Hy(u)du; P,= expI[iucos (6, +0)] Hy(u)du;
kr

kr

Pl — f " exp [ —iucos (6,—0)] Hy(u) du; Py — f " exp [ —iucos (0, +0)] Hy(u) du  (4-14)
kr kr
and P, Py, ..., are obtained from P, P, ..., by replacing Hy(u) by Hy(«).
Substituting Reiche’s solution in (4:10), and making the change of variable ky’ = —v, we
get

—m/3a(y) = e cos %ﬁsfw dvf00 cos (yv) cos [y (u—v)] Hy(u) du
0 v

—etigin g, f "o f " cos () sin [,(u—0)] Hy(u) du. (415)
0 v

By inverting the order of integration, these integrals may be reduced to Fourier transforms
of Hankel’s functions. Making the substitution

y=sinf (0<y<1l); y=cosh® (1 <y<0), (4-16)
we get (Erdélyi 1954)

a(y) = —i(m/3)~! [cos O(sin? 0 —sin2 )]~ [cos 40, cos £0 —cos 20, cos 4] (0 <y < 1),
(4-17)
a(y) = —4(m./8) 7! [sinh O (cosh? ®—sin? )] ~! {[cos 40, cosh 20+ cos 20, cosh £0]

+i,/8 [cos 40 sinh @ —cos 20 sinh 40]} (y>1). (4-18)

Equations (4-17) and (4-18) give the rigorous solution of the integral equation (R). Comparing
them with (4-11) to (4-14), we see that a striking simplification is accomplished by employing the
k-representation.

(¢) Verification of the solution

The verification that (4-17) and (4-18) satisfy equation (R), besides giving some insight
into the structure of this equation, leads to a set of identities which will play an important
role in later developments. However, the complete verification is very tedious, so that we
shall not reproduce it here (see A). Its main steps are as follows: :

Substituting (4:17) and (4-18) in equation (R), and separating real and imaginary parts,
we get a set of relations, which may be expressed in terms of a small number of functions
(defined below). These relations may then be reduced to trigonometric and hyperbolic
identities, with the help of certain identities satisfied by the functions.

2-2
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12 H. M. NUSSENZVEIG ON THE
The functions which appear for 0 < y < 1 are
[ cosh (A¢) d¢
G00) = || et g ) (ST
e sinh (A¢) dg
H0.0) = |ty —sinet) comheg—sm? Ak
[ cos (Ay) dyr .
Ca6,6,) =2 f o (SIn?§—sin?0) (sin? ¥ —sin20,)’ (4:19)
where # denotes Cauchy’s principal value. The functions which appear for y > 1 are
_ (e ~cosh (Ag) d¢g
(0,0)=2] o (cosh?§ —cosh? ®) (cosh?§ —sin?0,)’
_ e sinh (A¢) d¢
%(0,0,) = ﬂf o (cosh?¢ —cosh? ®)(cosh? ¢ —sin24)’
_ i cos (Ay) dy : .
C\0,0,) =7 f » (sin?y—cosh? O) (sin?f—sin?0)" (4:20)

All these functions are defined for —4 < A < +4. They satisfy a set of identities which we
shall call the R-identities. These identities will be derived in the Appendix (§7).

(d) Behaviour of the field near the edge

Reiche’s solution may be employed to study the behaviour of the field near the edge. For
this purpose, it suffices to make kr < 1 in equations (4-13) and (4-14). The result (see A) is

uy(r,0) = —%+(J3/2m) 25 (L) e 47 cos 20, cos 20 (kr)*
' +(3./3/8m) 28 T'(3) e~¥17 cos 40, cos 40 (kr)¥+.... (4-21)
The components of the diffracted electric field follow from (2-1):

E, 4(r,0)) " Y e 2 sin1d 3
{ i a)} — (247 y3) T(}) et cos 395{(:03 : 0} (k1)

+(/3/2m) 2VT(F) e-¥r cos [ 30 L. (4-22)
cos 10

Equation (4-21) is related to Sommerfeld’s representation of the branched wave functions
asseries of Bessel functions of fractional order (Frank & Von Mises 193 5, p. 838). According to
(4-21) and (4-22), the magnetic field is finite and continuous at the edge, whereas the
electric field tends to infinity as 73, ‘

The ‘edge condition’ (g) (§2) means, essentially, that the electric field must have the
correct type of singularity at the edges. Therefore, we may now replace it by the following
condition:

(¢') The electric field is everywhere finite, except at the edges, where it tends to infinity
as r3%,

This condition determines the asymptotic behaviour of the mode amplitudes. In fact, it
follows from (2-1) and (4-3) that

ya(y) = — (2i/1r)f:Ex,d(O, —v)sin () dv, where v= —Fky'. (4-23)
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SOLUTION OF A DIFFRACTION PROBLEM. 1 13

The function E, ,(0, —v) is regular, except at the origin. Its behaviour near the origin is
given by (4-22):

E, (0, —1) — A(6) v+ 0(uY);  A(0,) = —21T(3) ebir (21 /3) T cos (30,).  (4-24)

Applying a general theorem on the asymptotic behaviour of Fourier integrals whose

integrands have singularities at the end-points of the interval of i mtegra‘uon (Erdélyi 1956,
p- 48), it follows from (4-23) and (4-24) that

a(y) » —(iy8/m T(3)4(0,) ¥, (4-25)
where & means ‘asymptotically equal’. Equation (4-25) also follows directly from (4-18).
Thus, the main term in the asymptotic expansion of the mode amplitudes is determined by the singularity
at the edge. Consequently, (g’) may be replaced by the following condition, which applies
directly to the k-representation:
(g") The mode amplitudes a, must behave asymptotically (i.e. for y, > 1) like n~%.

5. THE INDEPENDENT WEDGES APPROXIMATION
(a) Definition of the i.w.a.

It follows from § 4 that, ‘outside of the critical region’, the solution of the wide double-
wedge problem must be of the form

an = (xn+A(xn, (5.1)
where a, = (—1)""a(y,) Ay (5-2)
and lim (Aa,/a,) = 0, (5-3)
K— o

a(y,) being the value taken by (4:17) and (4-18) for y =,

‘Outside of the critical region’ means: if neither y, nor y, approaches the critical point. If
we restrict ourselves to ‘ordinary’ (far from critical) incidence, (5-3) shows that, for large
enough K, we may neglect A, without committing a serious error, except near the critical
point. We may expect that the largest error will occur for the value of # which is closest to the
critical point, i.e. for n = ¢ or n = ¢+ 1; we shall assume, for definiteness, that this value is
n = ¢. Then, (5-2) may be an unacceptable approximation for # = ¢, since it may lead, as
will be seen later (§5(f)), to an inadmissibly large value for the partial reflexion coefficient
of this mode. To avoid this inconvenience, we shall employ the ¢th equation of system (5) to
define a, in terms of the remaining a,:

(1 <, c) %y = z ¢,n % Kc,s? (5'4)

n=0

where the prime on the summation sign indicates the exclusion of n = ¢.

Ifwe define o, by (5-2) for n == ¢, and by (5-4) for n = ¢, we obtain an approximate solution
of system (), which will be called the independent wedges approximation (i.w.a.). The corre-
sponding wave function follows from (2-8), (2-10) and (2-13). This wave function, by
construction, satisfies exactly conditions (a), (b), (¢), (¢) and (f) (§2), as well as (g") (§ 5). The
remaining condition () is approximately satisfied, since thei.w.a.is an approximate solution
of system ().
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14 H. M. NUSSENZVEIG ON THE

In so far as the integral of (4-3) may be replaced by the sum of (4-1), the wave function in
the i.w.a. approximately corresponds (disregarding the correction for n = ¢) to a properly
symmetrized superposition of two independent single-wedge wave functions, each of the
wedges being excited only by the incident wave. Thisis the reason for the name ‘independent
wedges approximation’. In this sense, the i.w.a. may be likened to the first-order approxi-
mation in Schwarzschild’s theory of diffraction by a slit (Schwarzschild 1go2), for it does not
take into account ‘multiple’ diffraction, i.e. diffraction by each wedge of waves diffracted by
the other one. However, there is only an approximate correspondence, since Schwarzschild’s
first-order approximation would violate conditions () and (¢) of §2, whereas the i.w.a.
violates only condition (d).

(b) The residuals of the i.w.a.

In the previous section, we have inferred that the i.w.a. must be a ‘good approximation’
for ‘ordinary incidence’ and ‘large enough’ K. We shall now replace these qualitative ideas
by more precise criteria.

The absolute error Aa, of an approximate solution of system () satisfies the following
system of linear equations:

(AS) Ax, = 3K, A4, +R, (5-5)
n=0
where Rm,s - § Km 7% (“ +Km s)' (5'6)
n=0

The system (AS) differs from () only by the replacement of the inhomogeneous term — K,
by R,, ;. The quantities R,, ; will be called the absolute residuals of the approximate solution a,,.
If the relative residuals e, ; = |R,, /K, | are very small, it may be expected that the relative
error |Aa,/a,| will be correspondingly small. This is not always the case for finite systems of
equations, but no simple practical criterion for recognizing exceptional cases (known as
~ “ill-conditioned systems’) is available (Hartree 1952, p.151). In the case of infinite systems,
it seems that this problem has never been considered. We shall return to it later on.
We shall now try to estimate the order of magnitude of the residuals of the i.w.a. If we
make

Ko = (=1 [K(y,7,) +AK, 10y (myn, + o), (57)
it follows from (5-2), (5-4), (5-6) and (4-7) that

R, , = (1-38, )[R, ,(0)+R, (AK) 1 R, ()], (5:8)

where Ry (8) = (=)™ Ay 3K () aln) by = [ Kpr)aldy ], (59)

Ry (AK) = (=1)745 87| 3'AK,, paly,) Ay—AK,,, | (510)

R, (@) =K, a, (511)

the prime on the summation signs having the same meaning asin (5-4). Thus, three different
sources contribute to the residuals: the difference (5-9) between integrals and sums of
Reiche’s solutions, the difference (5-10) between the kernel of equation (R) and the coeffi-
cients of system (5), and the ‘e, correction’ (5-11).
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SOLUTION OF A DIFFRACTION PROBLEM. I 15

The order of magnitude of (5-9) may be estimated with the help of the following numerical
integration formula (Hennequin 1949):

g S(ra) Ay — :J:f(y) dy = 38y [f(n) +/ ()] +%§(Ay)2n§ﬂf "I AY (Ve <Va<7a)s
’ (5:12)

the function f{y) being differentiable up to the second order in the interval (y;, y;). If f(y;)
tends to zero for j — 0o and if the sum which appears in (5:12) converges, (5:12) may also be
applied for j —00. The order of magnitude of (5-10) and (5-11) may also be estimated, with
the help of the expressions derived in §3. After a lengthy calculation, which will not be
reproduced here (see A), the following results are obtained:

The order of magnitude of «, is given by

a, ~ (Ay)}/cos b, (5-13)
The order of magnitude of the absolute residuals is given by
R,, .~ [cos30,jcos 0] (1—72)* (A (m 5 M), (514)
R,, .~ [cos}f,fcosb,] 752 Iny,,(A)*  (m 2 M), (515)
where M is defined by ,
Iny, ~ (Ay)~%, sothat 7y, ~exp (/K). (5:16)

Dividing the absolute value of (5-14) and (5-15) by |K,, ,|, we obtain the order of magni-
tude of the relative residuals:

€, s~ [cOsil/cosb ] (Ay)} for y,mot>1 and |[l1—9y%fnot<1l  (5-17)
€ps~1 for 0,51, (5-18)

€ s~ [cosil [cos20 ) Ay for m 2 M. (5-19)

In intermediate regions, the order of magnitude of ¢,, ; varies smoothly between the values
given in (5-17) to (5-19).
It follows from (5-17) to (5-19) that: (a) All relative residuals become of the order of unity

if and only if cos18,/( /K cosf,) ~ 1. (5-20)

This happens when the incident wave belongs to the region §, < 1, which will be called the
critical incidence region. (b) For ordinary incidence (i.e. outside of the critical incidence region),
the relative residuals are of the order of unity only in the critical strip §,, S 1. (¢) Outside of
the critical strip, all relative residuals are much smaller than unity, and tend to zero for
K — o0, in which limit the critical incidence region and the critical strip are reduced to the
points y, =1,y = 1.

Assuming that (S) is not an ‘ill-conditioned system’, we may infer that: (a) The:i.w.a. fails
completely within the critical incidence region. (b) For ordinary incidence, the i.w.a. is a very good
approximation for large K, except within the critical strip. For K — 00, the i.w.a. tends almost every-
where to the rigorous solution. This agrees exactly with our previous conclusions.

It follows from Reiche’s solution that the amplitude of the diffracted wave emanating
from one wedge, near the edge of the other wedge, is of the order of magnitude of the first
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16 H. M. NUSSENZVEIG ON THE

member of (5-20), whereas the amplitude of the incident wave is of the order of unity.
Therefore, the condition for the validity of thei.w.a. is that the ‘secondary’ excitation due to
multiple diffraction be negligible with respect to the ‘ primary’ excitation, which arises from
the incident wave. In this sense, the i.w.a. may be called a ‘weak coupling’ approximation,
for it corresponds to a weak interaction between the wedges, whereas the case of critical
incidence corresponds to ‘strong coupling’.

(¢) Thei.w.a. in region 1T
According to (2:10) and (3-1),

wi(ng) =3 [ AW) exp ikl — (1-79 Tk dy, (521)

where A(y) = kA(k,). Tt follows from (2:13) that
Aly) = 4%) +A(y), (522)
where AK(y) = (= 1) (2fm) (1=73/1—p)} (2 —9D) " ysin (7K) (523)
and  AG) = —(2m) (1= ysin (GK) 3 (~0" (1A} (PR e (529

AX(y) is the value taken by A(y) when all mode amplitudes are neglected. It corresponds,
therefore, to Kirchhoff’s approximation. A(y) represents the correction to Kirchhoff’s
approximation.

If y coincides with one of the 7,, the series which appears in (5-24) diverges, but 4(y)
remains finite, due to the factor ysin (yK). Ify,, is the closest neighbour to y, it is convenient
to separate from the sum the term n = m. The remaining series may be approximated by an
integral (a Cauchy principal value). Replacing @, by the i.w.a., this integral may be
expressed in terms of the functions defined in (4-19) and (4-20), and may then be evaluated
with the help of the R-identities, given in the Appendix. The effect of the difference between
the sum and the integral may be estimated with the help of (5:12). The final resultis (see A):

mcosfA(y = sinf) =~ (—1)* (sin2d—sin20,)~! {sin (K sin ) [cos 40, sin 0+ cos 30, sin 50
—2sinfcos 0]+ (i//3) cos (K sin 0) [cos 40, cos 20 —cos 30, cos 01}, (5:25)

for y < 1. The expression for y = cosh ® > 1 is the analytic continuation of (5-25).
Comparing (5-25) with (5-23), it is easily seen that, in the neighbourhood of # = 0, the
correction to Kirchhoff’s approximation is of the order of (K cos?0,) !, which, for ordinary
incidence, is very small. Therefore, in the neighbourhood of 6 = 0, Kirchholf’s approximation is the
main term of the solution ( for ordinary incidence). It has been shown in a previous paper (Nus-
senzveig 1959) that this is a necessary condition for the validity of classical diffraction theory.

(d) Classical optical patterns of the double wedge

According to (5-21) to (5-23), the wave function in region II in Kirchhoff’s approxima-

tion is given by WK (%, y) = uk(x,9,7,) +uk (%, 9, —7,), (5-26)

1 (*(1—y3isin[(y—y,) K . .
where (70 = gn | (1=2) SR WIT exp bty — 1 —apay. (52
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SOLUTION OF A DIFFRACTION PROBLEM. I 17

Equation (5-26) corresponds to the decomposition of the incident mode in a couple of plane
waves (§2): 4 — t(y,) +uy(—7,), where uy(7,) = b exp {ik{3,y—(1—y2)!]}. The optical
patterns of the double wedge in Kirchhoff’s approximation are identical to those of an
infinite slit of width 2a excited by this couple of plane waves. We may restrict ourselves to one
of the components, e.g. (5:27), and to the region y > 0, since the wave function is symmetric
with respect to Ox.

The geometrical optics pattern corresponds to the limiting case £ — oo ; we shall assume that 6
is unchanged in the limit (§4(a)). It follows that

lim {Sin—[(yy%yylﬂ} =10(y —7s), (5-28)

k~> o

[l
[vo(~7%)! [eo(¥s)|
0| _
i .
+xtang, 0  -~xtanb; Y
(@) ’

(6)

Ficure 4. (a) Distribution in y for given x; () geometrical optics pattern.

where d(x) is Dirac’s delta function. Since £ appears also in the exponent of the exponential
in (5-27), we cannot simply replace y by y,; we must take into account the variation of

the exponentialin the neighbourhood of y = y,. Expanding the exponent in powers of y —y,,
we find

lin afi(v,9,7.) = 0 (1) [ exp [y +tg0,) ) sim at) e (5-29)

k—>© m
Introducing the function

1 fory,—a<y<y,+a

1 [t . .
0 for other values of } - ;J_mexp [1(y—yo) ] sin (at) dift,  (5-30)

R(y, 9o, 0) = {

we finally get

klini‘o ufi(%,y) = uo(y,) R(y, —xig0,, a) +uo(—7,) R(y, x1g0,, a), (5-31)
which is precisely equivalent to the geometrical optics pattern (figure 4). The important
part of the domain of integration is the interval |y —y,| = 7/K. If the phase change of the
exponential in this interval is less than 27, contributions from different values of y interfere
constructively, so that, in the limit, we get the incident wave; if the phase change is greater
than 27, destructive interference sets in, and the integral vanishes in the limit.

3 Vor. 252. A,
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18 H. M. NUSSENZVEIG ON THE

The Fraunhofer diffraction pattern may be obtained by applying to (5-27) the general rule for
the evaluation of the Fraunhofer pattern in the £-representation (Nussenzveig 1959).
Adapted to the two-dimensional case of (5-21), this rule becomes

u(R,0) = Ymcos0 A(7) Hy(kR) (R —0), (5-32)
where R, § are polar co-ordinates (x = —Rcos(;y = Rsin ) and 7 is the stationary phase point,
given, in this case, by 7 = sin §. Taking into account (5-23), we get

ufi(R,0,y,) = $kacos0,H, (kR) (sin X)/X, (5-33)
where X = K(sinf —sinb,). (5-34)

This gives the well-known Fraunhofer diffraction pattern of a slit (Sommerfeld 1954).

Y

Ficure 5. Co-ordinate system for evaluation of Fresnel pattern.

To find the Fresnel diffraction pattern, it is convenient to shift the origin of co-ordinates to the
‘pole’ O’ of the incident wave with respect to the observation point (figure 5). Then, if
R = O'P', d’' = 00’, the phase of the exponential in (5:27) becomes

klyy—(1 ~—y2)‘%x] = kd'y+kR'[ysin0,+ (1 —yQ)%cos 0] (5-35)

In the Fresnel region (AR’ > 1, R’ > d'), the first term in the second member of (5-35) gives
rise to a slowly varying factor, so that the stationary phase method (Nussenzveig 1959) may
be applied just to the second term. Expanding the phase, up to the second order, about the
stationary phase point 7 = sinf,, we get

3,7 = (2m) () [ o[ exp [+ (2m) o] dt = B~ D)y (0,) Bly) — Pl
l (5:36)
where {ZZ} — (kjnR") cosO,(+a—d') (5-37)

and F(w) is the Fresnel integral (3-27). Equation (5-36) gives the classical Fresnel diffraction
pattern of a slit (Sommerfeld 1954).

It has been shown (Nussenzveig 1959) that all classical optical patterns depend only on
a very small spectral region, centred on the direction of incidence. The above analysis
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SOLUTION OF A DIFFRAGTION PROBLEM. I 19

allows us to determine the width of this region in the present case. Thus, in the geometrical
optics pattern, we have seen that the width is given by |y —y,| < 1/K. The same is true for
the Fraunhofer pattern, since, according to (5:33), the intensity is appreciable only for
| X| £ 1. To determine the width for the Fresnel pattern, it suffices to study the contribution
of a given interval, centred on y,, to the integral (5:27), with the help of the stationary phase
method (Erdélyi 1956). The width is found to be given by

[y =7l 5 (kR")~* cos b, (538)

which is very small in the Fresnel region (R’ > a).

(e) The optical patterns in the i.w.a.
According to (5:23), (5-25) and (5-32), the wave function in the Fraunhofer region, in the
i.w.a., is given by
un(R,0) = (—1)° (sin2d—sin?d,)~! {sin (K sin ) [cos %0, sin 260 + cos 20, sin £0]
+ (i/y/3) cos (Ksin §) [cos 40, cos 40 —cos 40, cos 401} Hy(kR). (5-39)

This result has a simple physical interpretation. It may be shown (see A) that (5-39) is
equivalent to a superposition of two single-wedge wave functions (taken in the Fraunhofer
region). The upper (lower) wedge diffracts the component of the incident wave which
propagates in the direction 6,(—4,).
The mean energy current per unit length in the z-direction within the element of angle
dd, in the direction 0, is given by
o(0) df = (c/87) |un(R,0)|2RdE. (5-40)

The quantity ¢(f) represents the intensity distribution in the Fraunhofer pattern (angular
distribution). It contains one term due to the ¢, component of the incident wave, one term
due to the —0; component, and an interference term. It suffices to discuss the first of these
terms, which, according to (5-39) and (5-40), is given by
0(0,0,) = (cK?/16m%) {[ (cos 40, sin §0 +-cos 40, sin £0) /2 sin 0]? (sin? X) /| X?
+[(cos 40, cos 40 —cos 40, cos £0) /2sin 0]% (cos? X ) /(3X2)}, (5°41)
where X has been defined in (5-34). Most of the intensity is concentrated in the region
| X| < 1, where (5:41) may be expanded in powers of y—y,:
0(0,0,) = (cK?/16 m2k) {cos? b, (sin? X) /X% — (2/K) (sin? 30, /sin §,) (sin? X)/X
+[(cos40,sin 20, —2 cos 20, sin40,) [sin 0 cos O,]? (cos®? X) /(27T K?) +...}. (5°42)
The first term represents Kirchhoff’s approximation; the remaining terms give the correc-
tions to classical diffraction theory. Let us introduce
w = (JKcosb,) 1. (5-43)

The main correction, given by the second term of (5-42), which is of the order of Xw? times
smaller than Kirchhoff’s approximation, is an odd function of X, which destroys the sym-
metry of the pattern. The other correction (third term of (5-42)) contains an additional
factor of the order of Xw?, and implies that the minima of the diffraction pattern are not
zeros of theintensity. This conclusion also follows directly from (5-24). Both effects are very
small for ordinary incidence.

3-2
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20 H. M. NUSSENZVEIG ON THE

Without explicitly evaluating the Fresnel diffraction pattern in the i.w.a., we can see that
it differs very little from the classical pattern, for ordinary incidence. This follows directly
from the physical interpretation of the i.w.a. To estimate the order of magnitude of the
corrections, it suffices to study the coefficients 4(y) in the region defined by (5-38). The main
correction to the coeflicients is of the order of (kR) ~*/cos 6, which is < win the Fresnel region.

Thus, within the domain of validity of the t.w.a. (i.e. for ordinary incidence), the corrections to
classical diffraction theory are very small. Large corrections may appear only for large angles of
diffraction (where the intensity is very weak), in the immediate neighbourhood of the
aperture, or in the case of critical incidence.

There are two important factors which contribute to explain the success of classical
diffraction theory. The first is the fact that the diffraction patterns depend only on a very
small region of the spectrum (Nussenzveig 1959). The second factor is the closeness to
geometrical optics in the short-wavelength region. As was shown in the preceding section,
the geometrical optics pattern is determined by the same small region of the spectrum as the
diffraction patterns. This explains why, under these conditions, Kirchhofl’s approximation
should be the main term of the solution in this spectral region. The second factor, by itself,
does not suffice to explain the success of classical diffraction theory (§1). The reason why
singularities near sharp edges do not affect the classical patternsis that they do not contribute
appreciably to the Fourier coefficients, in the relevant region of the spectrum: they con-
tribute mainly to the asymptotic region.

(f) The reflexion coefficient

The reflexion coefficient of the double wedge is defined as the ratio of the mean reflected
energy current to the mean incident energy current (per unit length in the z-direction). It
is given by

IRxlz = i Irn,SIQS (5'44>
n=0
where |7, 5|2 = (£, cos b,/ cos b)) |as|?, (545)

which may be called the partial reflexion coeflicient of the #th mode when excited by the
sth mode. The superscript s has been attached to the mode amplitudes «, to indicate ex-
plicitly their dependence on the incident mode. Notice that evanescent modes do not
contribute to (5-44).

It follows from (4-17), (5-2) and (5-45) that, for n = ¢, in the i.w.a.,

2 __ 2 -1 Sln%(ﬁn_ﬁs) Sln%(ﬁn+0sl}2 — | 2 .
|rn,xl - (3K €n€s COSﬁn Cos (9s) {Sil’l (072_{9‘?) + Sil’l (0n+ﬁs> - [/S,nl s (5 46)

whereas, for # = ¢, according to (5-13),
|7, 4|2 ~ cos @, [(Kcos3d,). (5-47)

If we had applied (5-46) for n = ¢, the partial reflexion coeflicient would diverge for 4, — 17,
whereas (5:47) tends to zero in this case, and is at most of the same order as the partial
reflexion coefficients of the neighbouring modes. This explains why the correction (5-4)
was necessary.
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SOLUTION OF A DIFFRACTION PROBLEM. I 21

Replacing the sum (5:44) by an integral, the reflexion coeflicient in the i.w.a. may be
evaluated, with the following result (see A):

9~ 00\ -1 1 1 sin 20, 4 cos3 30,
|R|? =~ (2m /8 {, K cos?0),) {cos 10, [3 cos 0, + 2sin 0, cosh.
/3cos2l,, |cosE(0,—m) } )
T 0, lcos (O, +m)|) (5:48)
'This may be replaced, with a mean error of less than 109, by
|R,|% =~ 0-1cosil,/({ K cos? 0,). (5-49)

The quantity { K |R|? is plotted in figure 6 as a function of 6. According to (5:43) and
(5-49), |R,|? is of the order of w?. Therefore, within the domain of validity of the i.w.a., the
reflexion coeflicient is very small. In fact, the corrections to classical diffraction theory are precisely
of the order of the reflexion coefficient.

1-2

go.g //
.
04
I
0 30 60 90

0, (degrees)

Ficure 6. Reflexion coefficient of wide double wedge as a function of the angle of incidence.

"The origin of reflexion is the distortion of the incident mode in the neighbourhood of the
waveguide mouth. This occurs mainly within a distance of a few wavelengths from the edges.
In fact, if # represents the order of magnitude of this distance, a fraction ¢/a of the incident
current will be reflected, so that the reflexion coefficient will be of the order of ¢/(acosf,).
Comparing this with (5-49), we see that ¢ ~A. The additional factor cos36,/cos d, which
appears in (5-49) must be related to the distortion of the incident wave by multiple diffrac-
tion. This discussion illustrates some effects that occur within a few wavelengths from
a border, a region hitherto nearly unexplored in optics.

(&) The case of critical incidence

The reflexion coefficient increases monotonically with the angle of incidence (figure 6),
for ordinary incidence. By extrapolation, this suggests the existence of strong reflexion in the
critical incidence region. It will now be shown that strong reflexion occurs in the neighbourhood of
all critical frequencies. If 0, < 1 (see (3-21)), the incident mode ¢ is almost totally reflected,
no matter what is the value of K. This includes, in particular, the narrow double wedge
(K < 1), which will be studied in part II. Here we shall restrict ourselves to K 2 1.
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22 H. M. NUSSENZVEIG ON THE
According to (3-43) to (3-45), the coeflicients K, , are of the form:
Koo = Kb+ 0(09) (m =+ ¢); K, = K+ 0(57) (n¢); K, =5+K80,+0(5).

CsC

(5:50)
In the limiting case of exactly critical incidence (5, = 0), system (S) becomes
(8) ap=3'Ky,a,  (m+o),
(S) " (5-51)

o
(€) 2a.=3 Kine,—5 (m=0),
e

where the prime on the summation sign means that n = ¢ is to be excluded. Thus, () is
separated into a homogeneous system (S”), which does not contain ¢,, and an equation (C).

The rigorous solution of system (S) then is
a,=0 (m=+=c¢c); a = —1. (5-52)

This corresponds to fotal reflexion of the incident mode. According to (2-8), (2:10) and (2-13), the
corresponding wave function identically vanishes everywhere. This means that there cannot
be propagation in the waveguide at exactly critical incidence.

If 5, < 1, (5-52) suggests the following ‘Ansatz’ for the solution (to first order):
a,=aYd, (m+c); a=—1+al0,. (5+53)

c

Replacing in (S) and neglecting higher order terms, we get

(8) ap = 23K, ,al—2K)). (m=+c),
n=0

($) i (5-54)
(€) a0 =23 KBap—4KD (m=0),
\ n=0
so that (.5) still separates into (8") and (C). Replacing (5:53) in (2-8), we find
‘uy(x,y) = —2icos (k,y) sin (k, %) +O0(d,). (5-55)

Thus, interference between the incident and reflected modes gives rise to quasi-stationary
waves within the waveguide. The terms which contain the ‘ perturbation parameter’ §, may
be called ‘radiative corrections’. ,

For 0, ~ 1, the separation of (§) may no longer be effected. We may consider 4, as
a measure of the coupling between the critical mode and the other modes. For §, < 1, the
coupling is weak, and we may speak of ‘radiative corrections’. This is the physical meaning
of the separation of system (). For J, ~ 1, we have strong coupling, and this description
becomes inadequate. This ‘coupling between modes’ is entirely different from the ‘ coupling
between wedges’ discussed in section ¢; for instance, in the neighbourhood of exactly critical
incidence, the coupling is weak in the former sense, while it is strong in the latter.

It is usually assumed that a diffraction problem contains only two important limiting
cases: the short-wavelength limit and the long-wavelength limit. We see now that there exists
a third important limiting case: the case of critical incidence. Herein lies perhaps the essential
difference between problems in which no linear dimension of the diffracting object is finite
and problems in which the diffracting object has at least one finite dimension. This is the
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SOLUTION OF A DIFFRACTION PROBLEM. I 23

reason for the difference between the single-wedge problem and the limit of the double-
wedge problem.

The importance of the third limiting case is that it provides a link between the theory of diffraction and
the theory of quasi-stationary currents. The existence of strong reflexion in the neighbourhood of
critical frequencies was established by Vajnshtejn (1954) for parallel-plate and circular
semi-infinite waveguides, as well as for semi-infinite two-wire or co-axial lines. The impor-
tance of this result for linking the theory of diffraction with the theory of quasi-stationary
currents seems, however, not yet to have received due attention.

Toobtain quantitative resultsin the region §, < 1, we must find the solution of system ($”) in
(5-54). This seems to be very difficult in the most general case. However, as we have already
mentioned, the narrow double-wedge problem is a particular case of critical incidence. The
solution of this problem, which will be discussed in part IT, may be taken as an illustration of
the effects which appear in this region. )

6. THE ITERATION METHOD

(a) Neumann’s iteration method

The problem which will be investigated in this section is related to question C of §1: can
Kirchhoff’s approximation be considered as the first step of an accurate solution by successive
approximations ? Since Kirchhoff’s approximation is a  geometrical optics’ approximation,
we shall now take as ‘unperturbed problem’ the geometrical optics limit, and try to develop
a method of successive approximations starting from this limit. This corresponds to the
alternative approach suggested in § 4a.

It follows from (3-12) to (3-14) that

lim K, , =0, (6:1)
for finite m as well as for m —o0, except for y,,— 1, y,—>1 (it is easily seen that this is an
exceptional case, for K, , = % for y, = 1, no matter what is the value of k). Therefore, except
in the case of exactly critical incidence, system (§) becomes homogeneous when £ — o0, so
that Kirchhoff’s approximation, a,, = 0, is valid almost everywhere in the geometrical optics
limit.

According to (6:1), K, , must be very small for K > 1, unless m and n belong to the

critical strip. Ignoring the exceptions, for a moment, let us examine what would happen if
we had

K =¢K

m,n

mm With K independent of K and ¢=¢(K) = O(K™*) (a>=0> 0).
(6-2)
If this were the case, (§) would be nearly diagonal for K > 1. This suggests that we might

apply Neumann’s iteration method. Starting from Kirchhoff’s approximation as zero-order

roximation (N,
app X ( O)? a%oz O, (6'3)

Neumann’s first-order approximation (N;) would be obtained by replacing (6-3) in (S):

a%l = ’—Km,s (64}
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24 H. M. NUSSENZVEIG ON THE

and higher-order approximations would be obtained by iteration:

a%r == _Km,s+ % Km,pagr_l = _Km,s_— (K2>m,s* e T (Kr) m, s? (6'5)
£=0
where (K7) s = % % %Km,pl(ﬁ’q ...K, . (rfactors). (6-6)
p»=0g=0 v=0
According to (6-2), this would lead to a Neumann series
allo = —e'Km,sw—&gFm,ann,;.., (6-7)
n=0

which might be expected to converge to the rigorous solution for small enough ¢ (large
enough K).
Actually, (6-2) does not represent the coeflicients K, ,. According to §3, the matrix

| K, .l for K > 1, is of the form

mn—>N C A4

y n

W W W )

¢ (%) (1) ks y(ln 7))

1Kol =] : T B (69

W W W &)
() (e ) R

The bracketed expressions give the order of magnitude of K,, , in different regions of the
matrix. The order of magnitude changes continuously across the transition regions, indi-
cated by dotted lines. The labelling of the rows and columns corresponds to a subdivision of
the spectrum into three main regions, namely: normal region (N), for 02 ~ K, and either
y, < 1lory,> 1, butnoty, > 1; critical strip (C), for 62 ~ 1; asymptotic region (A), for y, > 1
(the same applies to y,,).

In the 44 region of the matrix, according to §3,

—1)m*nnln (min)
n?  (m?—n?)

Thus, in the asymptotic region of the matrix, the main term of X,, , does not depend on K.
This is a very significant result; its physical interpretation will be given in part II.

There are two ‘anomalous’ regions in the matrix (6-8), where K, , becomes independent
of K, in disagreement with (6-2) : the region CC, where K,, , ~ 1, and the region A4. How
does this affect the convergence of Neumann’s method ? It may be verified, with the help of
(6-8), that, for ordinary incidence, the ‘anomalous’ regions give contributions of the same
order to all iterations. Therefore, if Neumann’s method converges in the critical strip and in
the asymptotic region, it must converge very slowly. Even in the normal region, the con-
vergence cannot be very rapid, for successive iterations give contributions of the same order.

(Vm> Ly, > 1). (6-9)

Km.,n = f(m,n = (


http://rsta.royalsocietypublishing.org/

. |
/I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SOLUTION OF A DIFFRACTION PROBLEM. I 25

(b) Neumann’s first- and second-order approximations

For ordinary incidence, Neumann’s method may be tested by comparing its results with
the i.w.a. For this purpose, we shall compute the first- and second-order approximations.

Neumann’s first-order approximation (&,) is given by (6-4). Its value follows from the
expressions given in §3.

According to (6:5) and (6:6), Neumann’s second-order approximation (N,) is given by

d%’ = _K - szn n, 8° (61())

The series which appears in (6-:10) may be evaluated by replacing it by an integral. The
result may be expressed in terms of the functions defined in (4-19) and (4-20) and their
first- and second-order derivatives with respect to A. With the help of the R-identities, the
following results are obtained (see A):

g — V{1 43— (62 402) J6m>+ (0, 0,372 [(6,, tan 6,—0, tan 0,/ (0, tan §,,— 0, tan 6,) ]}
+O0(K-%), for y,=sinf,<1, (6-11)

%(aNz)—%(aN')[l—{— +53 (¢2 —07)+ 2¢m03tanh¢mtan6']+0 Kb,

(@) = 5 @1t g (B 08 + L5 (8,130 0,—0,c0th),) ($ ycoth 8.+ 0,tan )]
+O(K%), for y,=coshg,>1. (612)

These results may be applied when y,, does not belong to the critical strip. Higher-order
Neumann approximations may also be evaluated (up to terms of the order of K-%) by
a similar procedure.

Now let us compare N, and N, with the i.w.a. The following functions are plotted in
figure 7: (—1)"*iK{,a,,(y, <1), for 6, =0° and ¢, = 87°; for y,>1 and 6§, = 0°:
(—1)m+st1 K%(a,,) (curves I) and (—1)™*s K (a,,) (curves I1I). Thei.w.a. is represented by
full lines, N, by dash-and-dot lines, and N, by dashed lines. For other values of §, similar
curves are obtained.

The N, and N, curves always lie below the i.w.a. curves. The relative error el!(el:) of
N, (N,) with respect to the i.w.a. will be defined as the difference between corresponding
results in the i.w.a. and in N,(N,), divided by the i.w.a. result. Let us study its behaviour as
a function of y,,,.

(1) Normal region. For y,, <1, el < 20%; its mean value is ~ 15%; it decreases for
increasing v, or 6. For 0, = 0°, N; may be obtained from the i.w.a. by the substitution:
sinid,, - ./30,/2m ~ 0,/3-63. For y,, > 1, let e}}(#) and e}(#) be the relative errors of the
real and imaginary part of X, respectively. Both errors increase with y,,. For1 <y, <2,
eM(R) < 20 % and eY(#) < 10 %. For y,, > 2, both errors become large.

Figure 7 shows that N, is considerably better than N,. For y,, <1, e}z < 5 %} its mean
value is ~38%. For 6, = 0°, N, may be obtained from the i.w.a. by the substitution:

1 _ L 3
sinid, *}311‘9’” 2150

4 VoL. 252. A.
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26 H. M. NUSSENZVEIG ON THE
The power series expansion of sin0,, is:
sin3f,, = 30, —1e=05+ ...

Thus, Neumann’s method is somewhat analogous to a power series development, but the
distribution of the error is more uniform. For 1 <y, <2, e}(Z) < 5% and e)x(.#) < 1%.
In contrast to N, N, remains a reasonable approximation even for 2 < y,, < 10, where
eM(Z#) $15% and ef2(J) < 39%.

2:0
\
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I |
i
\
4
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1'5 \ |
\\. ‘\\ "
A\
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AN
10 S ) \
AVERN
AN AN
] N8 025
\,\\'\.\\\\\
S I
\—{“‘\~:~\ \\\\\\ o=
A 0
O | = 2.0 25
Ym

() (=1)mikE,a,(0; = 0°) (D) (=1t K9 a,,) (0, = 0°)

(B) (=1)"*iKE,a,(0, = 81°)  (II) (=1)"+KI(a,) (0; = 0°)
Ficure 7. Comparison between the i.w.a. and Neumann’s first- and second-order approximations;
, Lw.a,; ———, N3 ————, N,.

(2) Critical strip. Though the phase of N, is quite different from that of the i.w.a. in this
region, the absolute value is of the same order of magnitude, even for m = ¢.
(8) Asymptotic region. In this region,
@, ~ (—1)mtst1(2¥] /3 K) exp (—4im) cos 20,7, (iw.a.), (6:13)
alr &~ (—1)m*s (i/nK) cosb,y,2Iny,,. (6-14)
Therefore, the asymptotic behaviour of ¥, is entirely different from that of the i.w.a. It
follows that N, fails completely in the neighbourhood of the edges. N, has a larger domain of

applicability. For instance, e2(#) < 159, for y,, < 102. The asymptotic behaviour of N,
recalls the expansion

Val = vatexp ($lny,) =yt [1+3ny,+7(ny,) +..]. (615)

This supports the above-mentioned analogy with a power series development.
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SOLUTION OF A DIFFRACTION PROBLEM. I 27

The following inferences are rendered plausible by these results: (a) The iteration method
possibly converges for ordinary incidence; () If so, the convergence should be moderately
rapid in the normal region, slowing down in the critical strip, and becoming increasingly
slower in the asymptotic region.

From the practical point of view of numerical convergence, the iteration method may be very useful
in the normal region (where N, is a good approximation), but this is not the case in the asymptotic
region.

So far, the iteration method has been applied only for ordinary incidence. Let us consider
now what happens in the extreme case of exactly critical incidence. It follows from (5-50) that
K, .= 10, .in this case, so that, according to (6:7),

aye = — (i)t = =0 (6:16)

Comparing (6-16) with (5-52), we see that, for exactly critical incidence, Neumann’s series
converges to the rigorous solution. This is a rather surprising result, for this is a case of ‘strong
coupling”’ (in the sense of §54). Neumann’s zero-order approximation is a ‘geometrical
optics’ approximation, and geometrical optics breaks down in this case. Notice, however,
that (6-16) converges very slowly for m = ¢.

In view of the above, one would expect that Neumann’s method still converges for J, < 1.
However, the convergence should be very slow, so that we shall not apply the method in this
region, for K 2 1. Anillustration of the behaviour of the iteration method in the neighbour-
hood of exactly critical incidence will be given in part II, where we shall apply it to the
case K < 1.

7. AppENDIX. THE R-IDENTITIES

To derive the identities which are satisfied by the functions defined in (4-19), let us con-
sider the complex integral

B
fpf(%& 0,0,)dz :fr' (z— ) (Zue—2i0z> ézwezieg (z—e~2105)° (7-1)

taken over the contour I' shown in figure 8. To render the integrand single valued, we take
a branch cut along the negative part of the real axis, and define

z¢ = exp [f(log|z|+iargz)] (—wm<argz< m). (7-2)

The contour I' consists of two segments AB and DE, on opposite sides of the branch cut,
joined by a circle C, of radius ¢ (§ — 0), centred at the origin, and by a circle C,, with radius
unity and centre at the origin, indented by four half-circles of equal radii ¢ (¢ = 0), centred
on the four poles of the integrand. The integrand is analytic within I', so that

ffm:a (7-3)
r
It is easily seen that

s ol ! %P dx
Lﬁfderfﬁfdz = —2isin (ﬂmfo(x%—e%") (x-Fe20) (xt ctifs) (x| e~ 207" (7-4)

It may also be shown that

lim | fdz=0, for f+1>0. (7-5)
d—>0JCy
4-2
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The contribution of the four half-circles, for ¢ — 0, is
lim | fdz=inZXZresf(z,/4,0,0,), (7-6)
604 4C

where the residues are to be taken at the four poles of the integrand. Finally, if C;,—4C
denotes the circle C;, less the arcs cut off by the indentations,

lim fdz = 1 gJUr%ﬂ exp [2i(f—1) y]dy (7-7)

¢—0J ¢—4C 8 J_j, (sin?¢ —sin?0) (sin? y —sin?0,)

Ay

23
*e 103
Y€

Ficure 8. Contour of integration for equation (7-1).

If we substitute (7-4) to (7-7) in (7-3), making the substitution x = exp (—2¢) in (7-4), and
evaluating the sum over residues in (7-6), we find, taking f = {A1+1,
i exp (—A¢) dg - 1 c9p o _{sin A0 sin A0,
f o (cosh?$—sin?0) (cosh?f —sin?4,) m cosec yAm (sin®f —sin*f) sin20 sin 26,
i exp (iy) dy

1 (sin? Y —sin? ) (sin? ¢y —sin?0,)"

"
-+ % cosec %Aﬂ@f (7-8)

Respectively by adding to (7-8) and by subtracting from (7-8) the same equation, with A
replaced by —4, we get the identities

. . sin (Ad) sin (A0
€,(0,0,) = mcosec A (sin? f —sin?0,) ! i ((2(9; —sn ((203] , (7-9)
Co(6,0,) — —sin Jn 5(0,0,), (7-10)

which, according to (7-5), are valid for —4 <1 < +4.
To derive the identities satisfied by the functions defined in (4-20), we consider the

integral
5 zfdz

fr,g(za/’)a 0,0,) dz :fp, (z+¢2°) (z+¢29) (z— €205 (z— e 20s) "

(7-11)
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SOLUTION OF A DIFFRACTION PROBLEM. I 29

The contour I", shown in figure 9, differs from I' by having two poles less on C}, and one
additional pole on the real axis, at x = —e~2°, surrounded by half-circles C and C’ of radiuse,
on each side of the branch cut.

Employing a method similar to that adopted in the previous case, we get, in the place of
(7-8),

o[ exp (—19)dg
o (cosh? ¢ —cosh? ®) (cosh? @ —sin?4,)
= —m cosec A7 (cosh? ® —sin?4,)~! :ig—gz-‘ +m cotan A7 (cosh? @ —sin? 6, )~}
exp(—10) |, N f*i‘” exp (idy) dy :
X “sinh2@ T zCoseC thr 7 _1n (sin?y—cosh? ©) (sin?§y —sin?0,) " (7-12)

\Y

216,
&7
i€

Ficure 9. Contour of integration for equation (7-11).

Adding or subtracting the same equation, with A replaced by —A, we get

€:(0,0,) = —mn(cosh? @—sin?,)~!| cotan jAn sinh 10 +cosec }An 212 gzs )

sinh 20
_1cosh 10
sinh20°

(7-13)

Cy(0,0,) = —sin IAnF,(0,0,) —m cos 1Am (cosh? @—sin24,)

These identities are valid for —4 <1 < 4.
Equations (7-9), (7-10), (7-13) and (7-14) are the R-identities.

(7-14)
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